手机浏览器扫描二维码访问
在17世纪,有一个赌徒德扎尔格向法国着名数学家帕斯卡挑战。
德扎尔格说:“甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,一共进行五局,赢家可以获得1oo法郎的奖励。当比赛进行到第四局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这1oo法郎才比较公平?”
帕斯卡陷入沉思,显然这个要使用概率的知识。
不难得知,甲获胜的可能性大,乙获胜的可能性小。
帕斯卡对赌徒说:“甲输掉后两局的可能性只有二分之一乘以二分之一等于四分之一。”
德扎尔格说:“没错。”
帕斯卡说:“那甲赢得后两局或后两局中任意赢一局的概率为一减去四分之一,为四分之三。”
德扎尔格说:“你的意思是甲赢得可能性高,让甲拿1oo法郎吗?”
帕斯卡说:“当然不对了,因为乙获胜可能性虽然低,但也有获胜可能性。”
德扎尔格说:“那怎么办?”
帕斯卡说:“虽然你们不能赌了,但是有概率所导致的期望,按照这个期望来。甲有75%的期望获得1oo法郎;而乙期望赢得1oo法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(12)*(12)=14,即乙有25%的期望获得1oo法郎奖金。”
德扎尔格一边听了,一边也开始心算,帕斯卡继续说:“可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的1oo*75%=75法郎,乙应分得奖金的的1oox25%=25法郎。”
德扎尔格听了,觉得很有道理。
帕斯卡分布,负二项分布的正整数形式,描述第n次成功生在第x次的概率,是统计学上一种离散概率分布,常用于描述生物群聚性,医学上用来描述传染性或非独立性疾病的分布和致病生物的分布。
满足以下条件的称为帕斯卡分布:
1.实验包含一系列独立的实验。
2.每个实验都有成功、失败两种结果。
3.成功的概率是恒定的。
4.实验持续到r次失败,r可以为任意正数。
成功生一次的,是几何分布。
简介关于一睁眼,我带着一堆崽子在逃荒悲催的苏红醒来,不只是穿到了一个战乱加天灾的年代,还从黄花大闺女成了五个孩子的娘!不幸中的万幸,自己穿来时不小心把一座城带来了。有了空间就有底气,老娘带着五个崽子把逃难过成了旅行!一路边走边救人,本来一家人的逃难成了一群人的旅行。跑不动?没事,咱有汽车,挖个坑?可以,咱有挖掘机!这难,怎么逃?干脆占山为王?还是落草为寇?兴建庄园,家致富终于过上了向往的田园生活娘,某王爷说要娶你!告诉他,我有拖油瓶。...
1943年,独立大队的大队长和政委,带着一队人马在陈家沟受到伏击,全军覆没。经司令部究竟决定,派李汉阳前往独立大队,成为新的大队长。他带着五个徒弟,再一次在陈家沟碰到了想要伏击他的日军这一次,此看李汉阳如何将这些小鬼子们耍的团团转,将小鬼子赶出华夏。...
...
...
各位书友要是觉得我想和你好好过程天源还不错的话请不要忘记向您QQ群和微博里的朋友推荐哦!...
任华的目标很简单攀一座山,追一个梦,站在山顶,看着梦里的风景他只是一名普通的科员,每天尽职尽责的工作,以为一辈子也就那样了。谁知领导的一次特别安排,让他彻底激活,踏上不一样的青云路官道红尘...