手机浏览器扫描二维码访问
杨辉三角形,一目了然,每个数等于它上方两数之和。
研究过《九章》、《缉古》、《缀术》、《海岛》这些算法的楚衍说:“我现了一个奇特三角,每行数字左右对称,由1开始逐渐变大。”
1o5o年写过《释锁算术》的贾宪说:“这个三角第n行的数字有n项。”
1261年,写过《详解九章算法》的杨辉说:“这个三角形前n行共[(1+n)n]2个数。”
13o3年朱世杰说:“第n行的m个数可表示为net-1个不同元素中取m-1个元素的组合数。”
1427年,写过《算术的钥匙》的阿拉伯人阿尔·卡西说:“第n行的第m个数和第n-m+1个数相等,为组合数性质之一。”
1527年德国人阿皮亚纳斯说:“每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即net,i-1)。”
1544年,写过《综合算术》的德国人米歇尔.斯蒂费尔说:“这是二项式展开式系数,其中(a+b)n的展开式中的各项系数依次对应三角的第(n+1)行中的每一项。”
斐波那契说:“将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。”
1545年法国的薛贝尔说:“将第n行的数字分别乘以1o^(m-1),其中m为该数所在的列,再将各项相加的和为11^(n-1)。11^o=1,11^1=1x1o^o+1x1o^1=11,11^2=1x1o^o+2x1o^1+1x1o^2=121,11^3=1x1o^o+3x1o^1+3x1o^2+1x1o^3=1331,11^4=1x1o^o+4x1o^1+6x1o^2+4x1o^3+1x1o^4=,11^5=1x1o^o+5x1o^1+1ox1o^2+1ox1o^3+5x1o^4+1x1o^5=。”
1654年,写过《论算术三角形》的帕斯卡说:“第n行数字的和为2^(n-1)。1=2^(1-1),1+1=2^(2-1),1+2+1=2^(3-1),1+3+3+1=2^(4-1),1+4+6+4+1=2^(5-1),1+5+1o+1o+5+1=2^(6-1)。”
这个被欧洲人称之为帕斯卡三角形。
17o8年的pierreRaymonddemontmort说:“斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。1+1=2,1+1+1=3,1+1+1+1=4,1+2=3,1+2+3=6,1+2+3+4=1o,1+3=4,1+3+6=1o,1+4=5。”
173o年的亚伯拉罕·棣·美弗说:“将各行数字左对齐,其右上到左下对角线数字的和等于斐波那契数列的数字。1,1,1+1=2,2+1=3,1+3+1=5,3+4+1=8,1+6+5+1=13,4+1o+6+1=21,1+1o+15+7+1=34,5+2o+21+8+1=55。”
后来人们也称呼这是中国三角形。
二维的杨辉三角有多项式系数,晶体晶格,单形的点线面或者是四维体,五维体等等这样的有价值的东西。其中是亏格为o的欧拉定理。对图论有重大帮助。对很多等差,甚至一级数列、二级数列等等有重要研究。
那三维的杨辉三角,肯定会有更加重要的信息。
高维的杨辉三角,肯定更加有价值。
或许轻松包括斐波那契数列,包括多亏格多面体的点线面等复杂信息。
或许杨辉三角是任何一个数学的终点。
近下来,就需要解决高维杨辉三角的数列问题了。有没有一种简单的办法来。
其中一个最重要的问题,就是二维的杨辉三角是否可以解决高维的杨辉三角问题?这也意味着,高维的杨辉三角简化成二维的杨辉三角问题。
这样的杨辉三角问题,是不是跟形数有关呢?有关系的话,是不是就变成了形数的问题?
简介关于一睁眼,我带着一堆崽子在逃荒悲催的苏红醒来,不只是穿到了一个战乱加天灾的年代,还从黄花大闺女成了五个孩子的娘!不幸中的万幸,自己穿来时不小心把一座城带来了。有了空间就有底气,老娘带着五个崽子把逃难过成了旅行!一路边走边救人,本来一家人的逃难成了一群人的旅行。跑不动?没事,咱有汽车,挖个坑?可以,咱有挖掘机!这难,怎么逃?干脆占山为王?还是落草为寇?兴建庄园,家致富终于过上了向往的田园生活娘,某王爷说要娶你!告诉他,我有拖油瓶。...
1943年,独立大队的大队长和政委,带着一队人马在陈家沟受到伏击,全军覆没。经司令部究竟决定,派李汉阳前往独立大队,成为新的大队长。他带着五个徒弟,再一次在陈家沟碰到了想要伏击他的日军这一次,此看李汉阳如何将这些小鬼子们耍的团团转,将小鬼子赶出华夏。...
...
...
各位书友要是觉得我想和你好好过程天源还不错的话请不要忘记向您QQ群和微博里的朋友推荐哦!...
任华的目标很简单攀一座山,追一个梦,站在山顶,看着梦里的风景他只是一名普通的科员,每天尽职尽责的工作,以为一辈子也就那样了。谁知领导的一次特别安排,让他彻底激活,踏上不一样的青云路官道红尘...