手机浏览器扫描二维码访问
作为牛顿看好的学生,麦克劳林经常思考一个问题。
世间很多物理运动,是不是都可以由已知函数表达,如果是已知的,那会是什么样的函数。
天下所有函数是不是都可以展开成多项式形式,这个多项式前有对应合理系数?
也许是可以的,即使不是准确了,但大概也可以展开成这样。
麦克劳林一开始去研究多项式函数的形状,自己也绘制了很多个函数。
麦克劳林开始现,只要多项式前的系数可以直接决定。
理论上就是改变多项式系数,就可以合成,或者近似合成几乎任何一个函数。这不是一个理论,而是实际需要的东西。
但比较麻烦的是,每次的合成比较麻烦,需要反复验证,才能吻合。
后来泰勒现泰勒级数之后,麦克劳林看到了这种简单的方法。
麦克劳林级数是函数在x=o处的泰勒级数,它是牛顿的学生麦克劳林于1742年给出的,用来证明局部极值的充分条件,他自己说明这是泰勒级数的特例,但后人却加了麦克劳林级数这个名称。
麦克劳林最后还是落下一个毛病,他还是没有用泰勒级数,他还是习惯于自己对多项式改变系数,来研究很多函数的性质,同时可以研究清很多运动轨迹。
牛顿对麦克老林说:“不可避免,我们要研究级数了,这是未来的趋势。”
麦克劳林说:“必须的,我们要展这么学问,毕竟它的用途颇多。”
“但是,我有一个疑问,我心里总是对这种东西有一种特别的感悟。”牛顿开始使用‘感觉’这一类的非理性词汇,想从这些的意味上去探讨这个东西。
“你这个疑问,是在研究二项式的时候,就出现了吗?”麦克劳林对牛顿研究二项式的精神震撼,如今有了级数这样的知识,或许这些之间有一些难以言说的微妙关系。
牛顿严肃的说:“你能解释为什么上帝,要我们把任何一个公式要变成一个写不完的级数吗?上帝是想告诉我们,每个东西都会有无穷小的细节?”
麦克劳林喜欢牛顿这种钻牛角的方式,因为数学家都爱转奇怪的牛角,外人看来是神经兮兮的行为,普通的数学工作者也仅仅会轻蔑一笑。而高级的数学家之间,用这样的方式说话,对他们而言,是一种哲学感上的一种极度舒适。
“我知道你想说的是,一个本来简单的公式,这么会有无穷的写不完的细节?而这种细节是上帝考验我们的,甚至是一种嘲笑。是嘲笑我们连一个简单公式,我们都不能准确的把他们写完。”
牛顿笑了:“是的,我们没有刻意去找细节,但是一个最简单的东西却有一种无穷无尽的细节。就是一个简单物本来就有无穷细节的意思。”
麦克劳林说:“我们可以利用这个细节,寻找相互等价的公式,却不能用他们准确测量什么东西。”
牛顿说:“没错,讨论到此为止了。”
牛顿知道,说个三天三夜的也不起作用,知道此事到此为止。
简介关于一睁眼,我带着一堆崽子在逃荒悲催的苏红醒来,不只是穿到了一个战乱加天灾的年代,还从黄花大闺女成了五个孩子的娘!不幸中的万幸,自己穿来时不小心把一座城带来了。有了空间就有底气,老娘带着五个崽子把逃难过成了旅行!一路边走边救人,本来一家人的逃难成了一群人的旅行。跑不动?没事,咱有汽车,挖个坑?可以,咱有挖掘机!这难,怎么逃?干脆占山为王?还是落草为寇?兴建庄园,家致富终于过上了向往的田园生活娘,某王爷说要娶你!告诉他,我有拖油瓶。...
1943年,独立大队的大队长和政委,带着一队人马在陈家沟受到伏击,全军覆没。经司令部究竟决定,派李汉阳前往独立大队,成为新的大队长。他带着五个徒弟,再一次在陈家沟碰到了想要伏击他的日军这一次,此看李汉阳如何将这些小鬼子们耍的团团转,将小鬼子赶出华夏。...
...
...
各位书友要是觉得我想和你好好过程天源还不错的话请不要忘记向您QQ群和微博里的朋友推荐哦!...
任华的目标很简单攀一座山,追一个梦,站在山顶,看着梦里的风景他只是一名普通的科员,每天尽职尽责的工作,以为一辈子也就那样了。谁知领导的一次特别安排,让他彻底激活,踏上不一样的青云路官道红尘...